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Illustration 1:  Data Assimilation for Chaotic Dynamics



Illustration 1(cont.): Data Assimilation for Chaotic Dynamics

What does a tiny initial perturbation do to prediction?

σ(0) = 10 -6

Answer: Cause some (chaotic) trouble!



What about a not-so-tiny initial perturbation?

σ(0) = 1

Answer: It  causes a lot of trouble!  The two runs started from initial 
conditions differing by about one percent in magnitude. You can think 
of the red line as being the true state evolution and the green line as 
being the predicted state. In this case, the prediction becomes useless 
very quickly. The solution to this problem is to assimilate observations.
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Then, what does data assimilation do?

σ(obs) = 2

Answer: It improves our ability to estimate the true state and make 
relatively reasonable short- to medium-range predictions. However, 
depending on the data assimilation scheme, the estimate may diverge 
after a while. The red line represents the true state while the green line 
represents the estimate (assimilation), the crosses are the observations; 
the data assimilation scheme is the extended Kalman filter (EKF).
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What if the data assimilation scheme is improved?

σ(obs) = 2

Answer: We get great results! Here we estimate the error due to linearization 
in the EKF via a Monte Carlo procedure proposed by Miller et al. (1994). We 
calculate the model error covariance off-line and then add that to the on-line 
EKF assimilation procedure. This is a rather good solution to prevent the EKF 
divergence due to misrepresentation of nonlinearities. However, this is a bit 
impractical for large data assimilation systems.
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How does a simplified assimilation scheme perform?
σ(obs) = 2

Answer: Quite well!  The assimilation scheme here is an adaptive optimal interpolation. 
In this case, the propagated error covariance (the costly part of the EKF) is replaced by 
a constant forecast error covariance matrix scaled by a single parameter that gets to be 
adaptively estimated on the basis of the observation-minus-forecast residuals (see Dee 
1995). The time series of this estimated parameter is displayed in the lower panel above.
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Illustration 2: Linear shallow-water stable (nearly normal) dynamics

State Variables: U, V, H

Observations: 6-hourly radiosondes (plus signs)
                         hourly wind profilers (squares)

The results of a variety of simplifications to the KF
have been studied for this model. The Fig. on the right
shows the expected RMS error in estimating each of the 
system’s variables for each scheme. Slow improvements
are seem from a simple optimal interpolation scheme (OID) with no account for  forecast error
propagation to a scheme that propagates only the geopotential forecast error covariance (SKF).
The SKF performs nearly as well as the KF (not shown in the figures). 

U-error

V-error

H-error

TIME (HOURS)



We now apply an OI scheme (an approximation to the Kalman filter) to assimilate observations into an 
unstable shallow-water dynamics. The OI scheme has no initialization and its error covariances are not the 
best. The lack of balance in the OI estimates excites gravity waves, which prevent the state from being 
properly estimated. Eventually the intrinsic dynamical instabilities evolve differently for the true state and 
the OI estimate and their difference grows exponentially (see ERMS error plots on the right for the three 
fields). The left most picture shows the true (top) and OI estimate mass field at t=0 – differences here are sole 
due to lack of precise knowledge of initial condition; the middle plot shows these quantities at t=234hrs when 
the true state and the OI estimate are completely different.  WATCH THE MOVIE.

Illustration 3: The Destructive Effect of Gravity Waves in Data Assimilation
T=0: True H(top) & Estimate
Contour interval is the same

T=234hrs: True H(top) & Estimate
Controur interval is still the same!! U-error

V-error

H-error



We now apply the KF to a 
case of wave-generation. 
This is done by assuming 
the initially (t=0) our 
estimate for the state of the 
system is zero (bottom-left) 
panel), which is clearly far 
from what the true state 
looks like (top-left). After 
some time the observations 
bring the estimate to within 
good agreement with the 
true state through the 
assimilation procedure. 
WATCH THE MOVIE.

Illustration 4: Wave Generation
T=0: True H(top) & Estimate
Contour interval is the same

T=234hrs: True H(top) & Estimate
Controur interval is still the same!!

ERMS error in total energy The figure on the left shows the expected root-mean-
square error in total energy as a function of time.
This indicates that as time passes the difference 
between the estimate gets dramatically reduced – even
though our original estimate is so far fetched. 







Note:  matrix A on this page is the same as M on the previous page.



Illustration 5: Approximations to Fixed-Lag Smoothing

Now the SW has been turned in to an unstable dynamics by having it linearized around
a zonal jet. To make the true state harder to estimate no observations are made available
over the central (most important) region in the domain where the wind jet is strongest.

KF & Fixed-Lag KS
KF Lag-1 KS

Lag-2 KS

Adaptive Approx Filter & 
                                 Fixed-Lag SmootherFilter

Lag-1 Smoother

Total Energy Expected RMS Error

Total Energy Expected RMS Error

TIME (DAYS)

TIME (DAYS)

The to- right panel shows that even for
unstable dynamics the KF is stable and 
so is the FLKS. Moreover, the FLKS shows
improvement over KF for each lag (results for
up to lag-4 are displayed).

The bottom-right panel shows that an adaptive
approximate filter is also stable (robust). A FL-
Smoother build on the basis of such filter performs well and
Shows improvement over filter.



Illustration 6: Fixed-Lag Smoother: Improving the analysis of synoptic events 

Case study: French storm of 27Dec1999 – implementation of a fixed-lag smoother in the DAO 
data assimilation system. Panels (c) and (d) show improvement in low of sea level pressure 
indicative of the storm.



         Illustration 7:
Adaptive Quality Control

Left panels show consecutive
analyses obtained with regular
quality control: many obs are
rejected since the seem abnormal
when in contrast w/ prescribed
statistics.

When the QC uses an adaptive
buddy-check observations that 
seem suspect at first wide up
being taken and allowing for
better analysis of the storm.

Case study: French storm
                   of 27Dec1999



Illustration 8: Diurnal Cycle Bias Estimation and Correction

Estimation theory can be
used to estimate and cor-
rect for model biases.

The example here shows
the spectra of the obs-
minus-forecast residuals
when forecast biases are
present (blue) and when
they are estimated and 
removed (green).If the 
filtering scheme behind
these residuals is optimal
the residuals will show a
flat spectra around one 
indicative of them being
white; notice how the tail 
of the green spectrum is
lower than that of the blue 
spectrum.

Providing a model for the bias “evolution” allows removal
of, say, biases in the diurnal cycle. Notice reduction of peak 
at 1cycle/day (red) when the model written above is used.



Closing Thought

Most of the methods to solve inverse problems are either Least-Squares or bear a close 
relationship to Least-Squares.

So, my advise to someone just starting in this field is to learn well about Least-Squares; 
what it means; and how it relates to methods like Kalman filtering/smoothing, and 3d/4d 
variational procedures.

Iterative methods to solve matrix-vector problems are often employed when calculating the
LS-like solution an estimation problem. So, learn well conjugate-gradient, Newton methods,
etc.

General remark: It helps to fix notation. One attempt to set standard notation came out
 of the Data Assimilation for Atmosphere and Oceans in Japan in 1995. 
   See Ide et al., in the Special Issue of the J. Meteorol. Soc. Japan of 1997.
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